

資源は人間に豊かさを与える。しかし、資源は世界の中で偏在する。 る。資源の便益を享受するのは誰か。



## 1. 偏在する資源

日本はエネルギー自給率が低く(2022年、11.3%)、海外に依存しなければならない。では、日本はどのように資源を得たら良いのか。

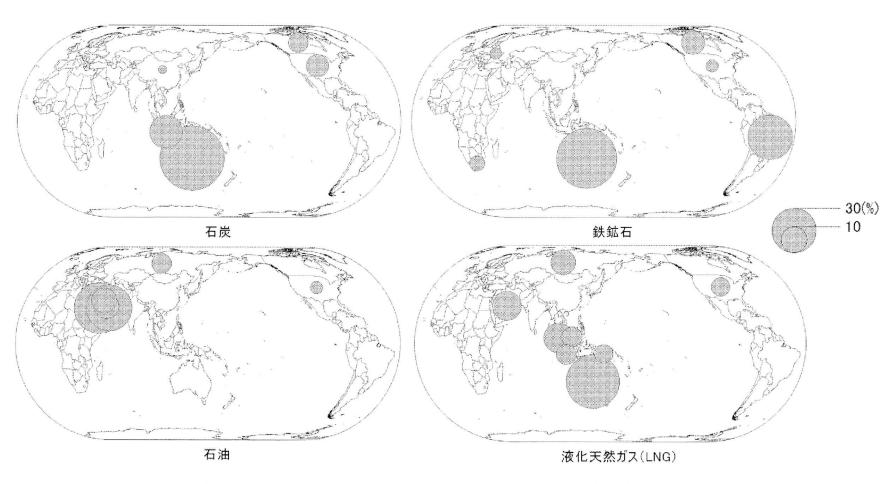



図 3-1 主な資源における日本の主要輸入先(2019年)(『日本国勢図会 2020 / 21 年版』) 各資源の輸入総額に対する各国の割合.

資源は世界の中で偏在 する。

資源をどのように分配するか?分配は公平か?

資源をもつ国は豊かだ ろうか?

日本の資源・エネル ギー政策はどうあるべ きか?

私たちは変わる必要が あるのか?



日本の資源の種類は多い が、大半が小規模で、多 くの鉱山は閉山。

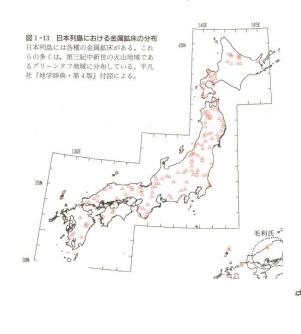



図 1-14 戦国大名による金・銀鉱山の開発

戦国大名は,経済基盤を確立するために鉱山開発に力

を入れた。当時の日本は世界有数の金産出国となった。

日本の金属鉱床の分 (上右) 戦国大名による 金・銀鉱山の開発 (風景のなかの自然地理)


(鉱山分布図)1) 1. 大江 金属鉱山 4. 上国\*. 石灰石鉱山 休廃止鉱山 7. 鉛山\* 13. 釈迦内\* 10. 花岡松峯: 9. 小坂\* 11. 花岡深沢\* 0080 6. 花輪\* 12. 花岡餌釣\* 42. 松尾\* 33. 月布\* 15. 八谷\* 19. 神岡茂住\* 20. 神岡栃洞\* 25. 東山 21. 中竜\* 26. 石見 38. 金平\* 27. 都茂\* e. O 37. 山宝\* 39. 伊佐\* 24. 棚原\* 16.35.八基\* 17. 高取 36. 武蔵白岩\* 41. 武甲山\* 34. 平木\* 40. 鳥形山\* 23. 坂越大泊 31. 岩戸\* 28. 玖珂\*

(鉱山一覧、日本工業会誌、1984年)

# 2. 資源とは何か

- ○経済活動に投入される要素としての資源
- ○付加価値を生み出すこと
- ・経済活動に利用される生産要素や原材料
- ・人的資源
- 観光資源
- ・地域資源
- •水資源

. . .



- ・ペットボトル
- ・空き缶
- ・紙パック
- ⇒リサイクル資源



### 糞尿は江戸時代には資源だった

- ・長屋の大家さんは店子が家賃を払えなく ても寛容だった!
- ・江戸に商品を運んだ舟は、帰りには糞尿 を積んで帰った!



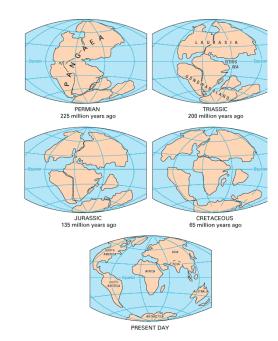
今後はどんなものが資源になるだろうか?

- ・下水処理場の汚泥
- 下水そのもの⇒ニューウォーター
- 都市鉱山

• • •

ほかにないかな?

## 3. 天然資源と地理的分布


- ○天然資源は世界の中で偏在する。たとえば、生産量の上位五カ国は、石油では約52.0%、天然ガスは約55.0%、石炭は約83.8%である。
- ○天然資源が偏在する理由は、地理的、地 史的な理由がある。

#### 埋蔵量について

- ・確認可採埋蔵量は複数の要因によって変化する。
- ・可採年数も確認可採埋蔵量の増加で延びることもある

その終わりを正確には表せないが、天然資源の有限性(枯渇可能性)があることは確か。

- ・枯渇する前に乏しく高価な時代が来る。
- ⇒その時、誰が資源を使うか!?



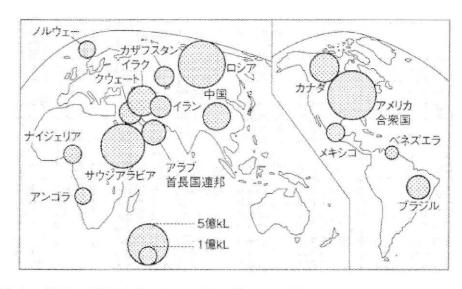



図 3-2 世界の原油産地(2019年)(『日本国勢図会 2020 / 21 年版』)

表 3-1 化石燃料の地域別埋蔵量(2017年)

|          | 石炭        |          | 石油            |          | 天然ガス          |          |
|----------|-----------|----------|---------------|----------|---------------|----------|
|          | 埋蔵量 (億トン) | 可採年数 (年) | 埋蔵量<br>(億バレル) | 可採年数 (年) | 埋蔵量<br>(兆 m³) | 可採年数 (年) |
| 欧州・ユーラシア | 3,236     | 265      | 1,583         | 24       | 62.2          | 59       |
| 中東       | 12        | 752      | 8,077         | 70       | 79.1          | 120      |
| アフリカ     | 132       | 49       | 1,265         | 43       | 13.8          | 61       |
| 北アメリカ    | 2,587     | 335      | 2,261         | 31       | 10.8          | 11       |
| 中南アメリカ   | 140       | 141      | 3,301         | 126      | 8.2           | 46       |
| アジア・太平洋  | 4,242     | 79       | 480           | 17       | 19.3          | 32       |

資料: BP 統計

注:可採年数は埋蔵量を年間の生産量で割った値.

### 4. 資源開発と地域

鉱産資源 鉄金属・非鉄金属 ⇒鉄が重要

鉄はどこにあるか
⇒<u>先カンブリア時代の地層が分</u>
<u>布する新大陸</u>に多い
⇒輸出国はオーストラリア、ブラジルが上位に



(二宮書店、基本地図帳より)

表 3-2 各種金属鉱の主要生産国 (2017年)

|        | 生産国上位3カ国とその割合(%)                        | 産出量計(t) |
|--------|-----------------------------------------|---------|
| 鉄鉱石    | オーストラリア (36.5), ブラジル (17.9), 中国 (14.9)  | 15 憶    |
| 金鉱     | 中国 (13.2), オーストラリア (9.3), ロシア (8.4)     | 3,230   |
| 銀鉱     | メキシコ (20.2), ペルー (16.4), 中国 (13.1)      | 2.66 万  |
| 銅鉱     | チリ (30.2), 中国 (9.0), ペルー (8.9)          | 1,910 万 |
| ボーキサイト | オーストラリア (28.5), 中国 (22.7), ギニア (15.0)   | 3.08 億  |
| すず鉱    | 中国 (31.9), ミャンマー (18.8), インドネシア (18.1)  | 28.8 万  |
| マンガン鉱  | 南アフリカ (34.7), オーストラリア (17.0), 中国 (12.3) | 1,700 万 |

資料:『世界国勢図会 2020 / 21 年版』

#### 新たな資源の発見が社会や経済に及ぼすインパクト

- ・人口移動 ポトシ銀山(現在のボリビア)、ゴールドラッシュ(アメリカ)
- ・エクメーネ(人間の居住域)の拡大 ⇒スピッツベルゲン島(石炭)、キルナ・イェリバル鉱山(鉄)

日本ではどのような例があるか?3ページの地図を参照

# 資源開発の負の側面は?

# コラム: 鉱山都市の持続的発展に向けた取り組み

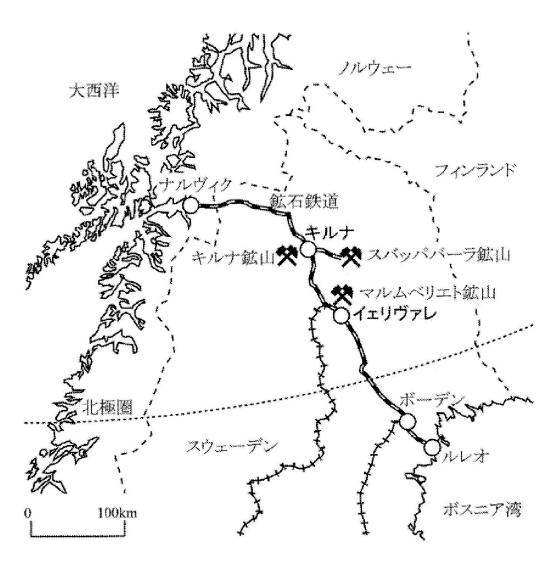



図 3-3 キルナ・イェリヴァレ鉱山の位置 (外枦保 2018)

### キルナ・イェリバレ鉱山

- ・鉄鉱石の産出により、北極圏に開発された鉱山都市
- ・季節により積み出し港が変わる
- ・露天掘りから坑内堀りへ
- ⇒地表陥没の恐れ:市街地を移転へ(どんな対話があり、 どのように諒解を形成したか、気になるところです)

## 日本における坑内掘りによる地表面陥没の 事例

- ·栃木県大谷町 大谷石
- · 岐阜県御嵩町 亜炭鉱

⇒御嵩町にはハザードマップとして亜炭層(空洞) 深 度分布図がある

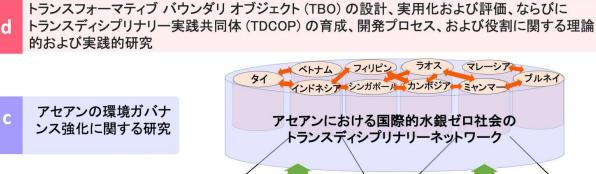
どのような歴史的背景があるか?

地域はどのように対処したか?

調べてみよう!

# 小規模な金採掘(ASGM)による水銀汚染

金鉱石から金を取り出すには水銀を使う方法が簡単。しかし、水銀ガスを吸入することで水銀中毒になってしまう...。


人の健康、環境を守るために「水銀に関する水俣条約」がUNEP(国連環境計画)を中心にしてとりまとめられ、発効。

それだけで良いのか。現場における実践は?

地球研SRIREPプロジェクトの紹介







零細小規模金採掘による水銀汚染

水銀を含む汚泥が 河川水や土壌に混入



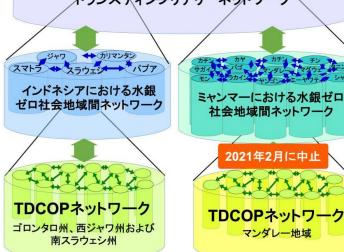
水銀アマルガム の加熱による水 銀蒸気を含むス モッグの放出

大気の水銀汚染



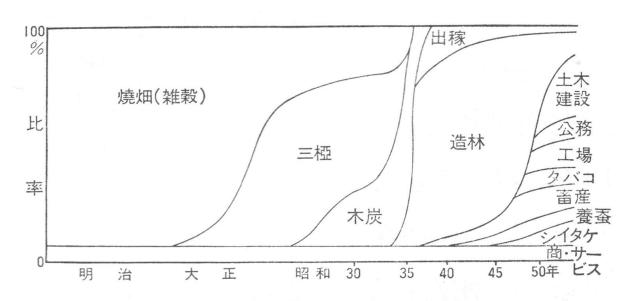


水銀アマルガムの 加熱による金地金 の形成




ASGM における将来シ ナリオを使用した水銀 汚染の削減のケースス タディ

水銀フリー社会に向け


た地域間ネットワーク

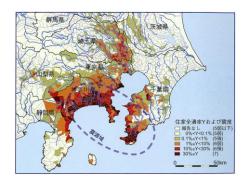
に関する研究



# 5. エネルギー革命と再生可能エネルギー






1図 四国山地高知県檮原町における 生業構成の変化 (概念図)

日本の山村における主要エネルギー源の変化を、 高知県檮原町における生業の変化から読み取って 見よう。

関係性の中で、山村社会がどのように変わり、それがどんな課題を生み出したか?

(藤田佳久著「日本の山村」から)

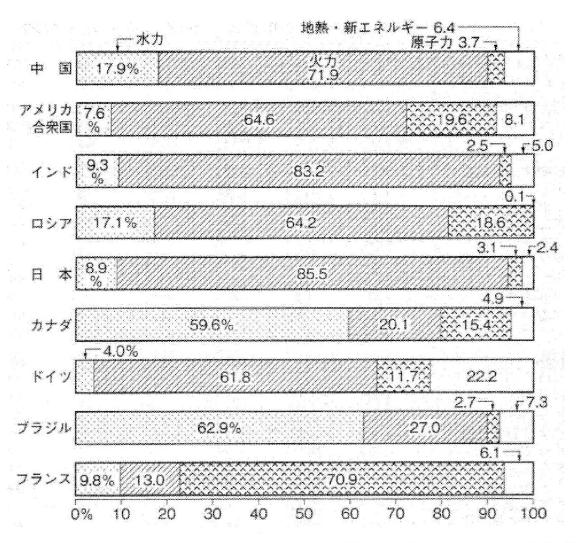
100年前に発生した関東大震災(大正関東地震)では東京は大火災に見舞われた。なぜ火災が発生したのか。



上は関東大震災における震度分布(武村雅之による)



右図は今村明恒による。上は煙を上げる日比谷公園近傍。










# 化石エネルギーから非化石エネルギーへのシフト ⇒どのように達成するか?



1次エネルギーの構成は多くの国で化石燃料が主力

#### 再生可能エネルギー

水力、太陽光、風力、地熱、バイオマスなど

#### 転換は可能か

#### 諸外国の状況は?

#### エネルギーの地産地消

- これまでのエネルギー 利用の前提は?
- ・どんな政策が?
- ⇒固定価格買取制度(FIT: Feed-in Tariff)

表 3-3 再生可能エネルギー発電量 (2017年)

|         | 発電量(億 kWh) |
|---------|------------|
| 中国      | 16,624     |
| アメリカ合衆国 | 7,182      |
| ブラジル    | 4,664      |
| カナダ     | 4,322      |
| インド     | 2,635      |
| ドイツ     | 2,163      |
| ロシア     | 1,862      |
| 日本      | 1,682      |

資料: 『世界国勢図会 2020 / 21 年版』

図 3-4 主要国の一次エネルギー構成(2017年)(『世界国勢図会2020/21年版』)

# どうすれば再生可能エネルギーが普及するか

○技術・コスト発送電の仕組みはどのような思想に基づいているのか



- ○制度
- ○人の価値観の変更
- ○ほかに何があるか?



# 再生可能エネルギー導入における問題点

- ○土地の特性を理解しない立地
- ○日常の暮らしへの影響
- ○生業への影響-全体の利益、当該地の不利益
- ○ほかに何があるか?

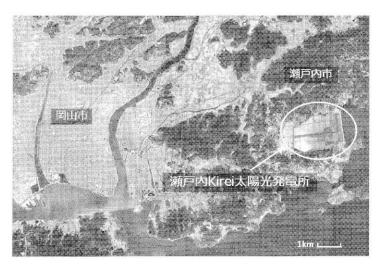



図 3-5 岡山県の瀬戸内 Kirei 太陽光発電所 (GoogleMap をもとに作成)

### カーボンニュートラル



千葉県における地球温暖化対策、カーボン・ ニュートラルに対する取り組みを知ろう!

自分でできる対策には何があるか?

企業の取り組みには何があるか?

社会としての取り組みには何があるか?

自分は主体的に参加できるか?



# 6. 持続可能な社会に向けた取り組み

#### ○なぜ再生可能エネルギーを進めなければならないか

・資源問題の深刻化←世界的な人口増加、工業化

#### ○資源利用の持続可能性

- 3R(Reduce,Reuse,Recycle)
- ⇒4Rは3RにRefuseを加えたもの、Repairを加えた5Rも
- ・ゼロ・エミッション、ゼロ・ウェイスト

#### ○どのようにして実現するか

- ・国際社会における世論形成、トップダウンの取り組み
- ・草の根活動(グラスルーツ)

#### ○地域やコミュニティーにおける実践は力を持つか

- ・近くで具体的な取り組みがあるかどうか、探してみよう
- ・みなさんも参加してみませんか

1972 国連人間環境会議(ストックホルム会議) 人間環境宣言
1987 環境と開発に関する世界委員会 (ブルントラント委員会)
1992 リオデジャネイロ環境サミット 持続可能な開発のための行動計画 「アジェンダ21」 地球温暖化、生物多様性
2002 ヨハネスブルク環境サミット 持続可能な開発に関する世界サミット 持続可能な開発に関する世界サミット
2012 リオ・アフター20

> 個人、NPOや任意団体、学術団体等、 様々な活動主体がある。



## 自分や家族の安全、安心を支えているモノ、コトは何なのだろうか?

・関係性を確認してみよう!

コラム: 再生可能エネルギーをめぐる地域の課題

### 再生可能エネルギー(自然エネルギー)の普及をめぐる問題

・設置上の問題 土地の性質に対する理解の不足

生態系への影響

健康影響

・制度上の問題 FIT制度

発送電システム

### 私たちはどのような態度で再生可能エネルギーの普及に取り組むべきか

- ・NIMBY(Not In My Back Yard)をどのようにして乗り越えるか
- ⇒対話(Dialogue)
  - ・現在の暮らしの文明論的考察

### 合意形成をどのようにして達成するか

・共感、原則(理念)、有用(合理性)...3つの基準