August 4, 2010

千葉大CEReS近藤研セミナー

JAXAにおける地球観測と 「だいち」ALOS利用研究プロジェクト

JAXA's EO Programs and "Daichi" (ALOS) Research and Application Project

田殿 武雄 (Takeo Tadono) 宇宙航空研究開発機構 地球観測研究センター (JAXA EORC) 千葉大学 環境リモートセンシング研究センター (CEReS, Chiba Univ.) E-mail: tadono.takeo@jaxa.jp URL: http://www.eorc.jaxa.jp/ALOS/index_j.htm

Introduction

- ✓ JAXA's Earth Observation (EO) Program
- Earth Observation Research Center (EORC), JAXA

"Daichi" (ALOS) Research and Application Project

- ✓ Overview and status of *"Daichi"* (ALOS)
- Sensor calibration
- Product validation : PRISM Digital Surface Model (DSM)

Data Analysis Examples

Forest and LULC mapping by PALSAR and AVNIR-2
 Disaster monitoring with the emergency observation
 Glaciers and glacial Lakes in the Bhutan and Nepal
 Himalayan Regions: "Glacial Lake Outburst Flood (GLOF)"

Calibration and Validation (Cal/Val) From space (satellite and sensor) On the ground -Digital number (DN) -Radiance, NRCS, BT Calibration -Pixel, Line (x, y) -Lon, Lat (x, y) -Position, attitude, time -(Altitude, z) Characterization Spatial and temporal variation, degradation Parameter update, tuning Accuracy Assessment Requirement to specification of next mission User Geo-physical parameters Reference data -Surface reflectance Validation -Truth data -Classification -In-situ measurement -Altitude, height, map **Research** and analysis -Experiment Knowledge -Forest biomass -Simulation **Accuracy evaluation** -Soil moisture, snow -SST, Ocean color -Wind speed, vector -Precipitation -Aerosol Definitions at CEOS Working Group on Calibration and Validation (WGCV) Calibration: The process of quantitatively defining the system responses to known, -CO₂ controlled signal inputs -Surface deformation Validation: The process of assessing, by independent means, the quality of the data -Disaster monitoring products derived from the system outputs Pan-sharpened image of TKSC using PRISM (Mar. 27, 2006) and AVNIR-2 (Mar. 25)

Jan. 24, 2006: Launch by H-IIA #8 from TNSC Aug. 4, 2010: 4.52 years (1,653 days) after launch

"Daichi" (ALOS) Characteristics

Launch Date Orbit Local Time at DN Altitude Inclination **Recurrent Period** Revolution Period Data Collection Yaw Steering Attitude Error each axis **Design Life** Satellite Mass **Generated Power**

10:33am, January 24th, 2006 (JST) Sun-synchronous ALOS の 軌道 高度 10:30am +/- 15 min. 691.65 km @Equator 98.16 degrees 46 days (Sub-cycle: 2 days) 14 + 27/46 (/day), 671 (/recurre 広島 ひろしま うきょう 98.7 minutes Longitude Repeatability +/-2.5 km > +/-0.5km@Equator (Feb. 2, 2007) 1 DRTS (Data Relay Test Satellite), 240 Mbps HSSR (High Speed Solid state Recorder) + DT (X-band direct downlink), 120 Mbps Off / On 2.0e-4 deg. (goal) 0.1 deg. (maintain) 3 years > 5 years (expecting) 4,000.8 Kg 8.5KW@BOL (>7 KW@EOL)

ALOS Basic Observation Scenario

PRISM (Descending)

- ✓ One global coverage annually (OB1 Triplet; OB2 selected areas)
- \checkmark 2 cycles (2 x 46 days) required for each region (+/-1.2deg. pointing angle)
- ✓ Timing based on cloud statistics, seasonality and sun elevation

AVNIR-2 (Descending)

- ✓ One global coverage annually (0deg. pointing)
- \checkmark One observation within 2 cycles
- \checkmark Timing based on cloud statistics, seasonality and sun elevation

PALSAR (Ascending / Descending)

- ✓ Asc.: 2-3 global coverage annually (Summer FBD34deg.; Winter FBS34) Global InSAR coverage every 2 yrs Pol-InSAR campaigns every 2 yrs
- ✓ Desc.: One global ScanSAR coverage annually Intensive ScanSAR sites

> Since Cycle 28: Prioritize no acquisition areas and cloud-covered areas for optical

* Observation Scenario can be find on web http://www.eorc.jaxa.jp/ALOS/en/obs/overview.htm

EURU Earth Observation Research Center

Acquisition Status in the World

May 16, 2006 - Apr. 29, 2010

PRISM 35km (OB1) (Cloud cover: 0-2% / scene)

PRISM 70km (OB2) (Cloud cover: 0-2% / scene)

AVNIR-2 (Cloud cover: 0-2% / scene) Image coverage map of PRISM and AVNIR-2 based on the basic observation scenario Spatial coverage: PRISM OB1 65% with 0-2% cloud cover in scene OB1 79% with 0-20% cloud cover in scene AVNIR-2 77% (0-2%); 89% (0-20%)

3回観測

9回観測

6回観測

Acquisition Status of PALSAR

PRISM

AVNIR-2

Geo Cal – AVNIR-2 Geometric Correction Accuracy

Time trend of geometric accuracies of AVNIR-2 0deg. compared between before and after alignment parameters updated (Oct. 22, 2008).

Geometric errors in Y direction of AVNIR-2 had a linear relationship between observation dates before updating alignment parameters (*).

- Normally, AVNIR-2 is operating as 0deg. pointing angle
- Satellite orbit inclination change (yaw maneuver) has been done on June and July 2008
- AVNIR-2 alignment parameters has been updated on October 22, 2008
- Errors in X direction (x) are caused by quantization of the pointing angle setting

Earth Observation Research Center

Geo Cal – PRISM Alignment Variation Model

Short term variation model as a function of "s" normalized observing time in recurrent (left: rolling, and right: pitching).

Long term variation model as a function of "d" observing date (left: rolling, and right: pitching).

PRISM sensor alignment model (nadir) using GCPs

- Two time scale: short term the time (2nd order Fourier series), long term the date (linear)
- Similar analysis for forward- and backward-looking radiometers
- Validation of pointing alignment parameter and generation of high level products

esearch Center

See Cal – PRISM Geometric Correction Accuracy

Observation date Averaged geometric errors of nadir looking radiometer of PRISM L1B2 (left: X (pixel) direction, and right: Y (line) direction).

Observation date

Observation date

Standard deviations of geometric errors of nadir looking radiometer of PRISM L1B2 (left: X, and right: Y).

Time trends of geometric correction accuracy of PRISM/N since April 2007

Averaged error: Absolute geometric correction (i.e. system correction) accuracy

Each colored plot: different pointing alignment parameters (APs) to use image processing

Radio Cal – TOA Reflectance Function Scheme

- The scheme is a cross calibration using the similar geometric condition; solar zenith (θ_0), and relative azimuth (ϕ) angles which depend on local time and inclination angle of the orbit (ALOS \cong Terra \cong Aqua (N-S line symmetry) \cong ENVISAT).
- We use top-of-atmosphere (TOA) reflectance function of satellite zenith angle (θ) at target points using MODIS observations for the reference.
- Merits: we can get <u>many samples, not only nadir, and don't need in-situ data</u>

	A	LOS and EOS	observation	75	AVNIR-2 a	and MODIS
MODIS		ALOS AVNIR-2	Terra MODIS	Aqua MODIS	chai	nnels
scanning		Sun- Synchronous	Sun-	Sun- Synchronous	AVNIR2	MODIS
	Orbit	Descending	Descending	Ascending	1 (463nm)	3 (466nm)
		10:30	10:30	13:30	2(560nm)	4 (554nm)
Εφ	Repeat Cycle	46 days Sub Cycle: 2	Repeat Cyc	le: 16 days	3 (652nm)	1 (646nm)
N S	nopour office	days	Sub Cycle: 2 days		4 (821nm)	2(0E(nm))
W	Altitude	691.65 km	705	km	-	2 (8301111)
accompatric condition	Inclination	98.16 deg	98.2	deg		
geometric condition	Satellite	-44~+44 deg	65 165 do	a (scapping)		
Coompetric condition of MVNIP 2 and	zenith	(pointing)	-05~+05 de	y (scanning)		
DPISM (Nadir) are similar to geometries	FOV (swath)	70 km	2330) km		
in 16 days MODIS observations.	IFOV	10 m	250~1	000 m		
I A SEA					•	

EORG Earth Observation Research Center

Radio Cal – AVNIR-2 Cross-Cal with MODIS

-	Number				AVNIR2/MODIS				
AV2 Band	1	2	3	4	1	2	3	4	
Terra	14813	17205	17067	16697	1.002	1.032	1.002	0.936	5
Aqua	14892	15128	15020	14586	0.981	1.025	0.989	0.927	¥.

Difference caused by Antarctic data

- Bands 1~3 agree Terra/Aqua MODIS within 3.2%
- Band 4 agree Terra/Aqua MODIS within 7.3%. The half of error can be explained by water vapor absorption

-

Many samples can be obtained !

LUNV Earth Observation Research Center

Radio Cal – AVNIR-2 FOV Calibration

1. FOV noise

- Corrected by cross-calibration with MODIS (using a directional function of MODIS TOA reflectance)
- Temporal change is described using the internal lamp of AVNIR-2
- 2. Gain-mode difference
 - · Gain-modes 2 and 3 are corrected using the lamp data
- 3. Small-scale noise (<~0.5DN)
 - Corrected by small scale average of smooth & bright area (polar snow fields)

Radio Cal – AVNIR-2 FOV Calibration

Antarctic 2007/11/19

Band 3,2,1 RGB image

File = smooth-oldout/ALAV22007111909687525-O1A-----11 RGB=652, 560, 463nm

new

File = smooth-new11/ALAV22007111909687525-O1A-----21 RGB=652, 560, 463nm

Band-1~4 line plot -1) -100 [3/]

(Ba)

Earth Observation Research Center

Radio Cal – PRISM Stripe Noise Reduction

 Odd-Even pixel and inter-CCD unit difference were large sometimes in PRISM images

✓ We assume PRISM sensor itself is stable and the error is caused by insufficient frequency of the dark-current downlink (optical black *i.e.* offset error)

We estimate the dark current statistically using each scenes

- 1. Inter-CCD unit difference (offset) is corrected by overlap samples (32 pixels) after the default radiometric correction
 - The correction coefficients are tuned to keep mean radiance of all CCD unit
- 2. Odd-Even pixel difference (offset) is corrected by statistics of the Even minus neighboring two Odd samples in each CCD
- 3. Above statistics are processed in each one of five line-blocks, and correction offsets are linearly interpolated by the line number
 - Irregular and high-contrast samples are excluded in the statistics

Released on October 19, 2007

Dif = B - (A + C)/2

ALPSM20070803081102820 Forward

Before

Radio Cal – PRISM Cross-Cal with AVNIR-2

✓ Absolute radiometric calibration of PRISM is achieved by cross-cal with simultaneously acquired AVNIR-2

The nadir image can observe under same geometry and same atmospheric condition at the same time

✓ Comparison is done by top-of-atmosphere (TOA) radiances calculated from simulated PRISM reflectance by AVNIR-2 and actual PRISM radiance

✓ The radiances agree well with 3.6% (RMSE)

🛏 🎔 🛯 🄪 🛩 Earth Observation Research Center

Calibration Results of PRISM/AVNIR-2

Standard Product	Previous results as of Sep. 29, 2007	Results as of July 1, 2009 (Public*)		
PRISM 1B2	Geometry Absolute Accuracy (RMS): using 1,390	Geometry (Jun. 22, 2007-Jun. 4, 2009) Absolute Accuracy (RMS)		
	Pixel (X) Line (Y) DistanceNadir6.5m7.3m9.8mForward8.0m14.7m16.7mBackward7.4m16.6m18.1mRelative Accuracy (1σ)3 radiometers1.9m2.3m3.0m	Nadir 5.6m 5.3m 7.8m using 5,499 GCPs, 586 scenes Forward 4.9m 6.1m 7.8m using 1,771 GCPs, 225 scenes Backward 5.0m 7.1m 8.7m using 4,839 GCPs, 525 scenes Relative Accuracy (1 σ) 3 radiometers 1.4m 1.8m 2.4m CE90 Nadir 11.8m, Forward 12.4m, Backward 13.4m Radiometry Absolute accuracy: similar to that of AV/NIR-2		
AVNIR-2 1B2	Geometry (-41.5 to +41.5 deg. pointing) Pixel (X) Line (Y) Distance Absolute Accuracy (RMS) 106m 19m 108m Relative Accuracy (1σ) 4m 4m 6m	Geometry (all period) Absolute Accuracy (RMS) Pixel (X) Line (Y) Distance 0 deg. pointing 71.1m 7.5m 71.9m +/-41.5 deg. 60.9m 96.6m 114.2m Relative Accuracy (1 σ) 3.4m <u>7.7m</u> 8.5m using 1,035 GCPs, 54 scenes Radiometry (all period) Absolute accuracy Band 1-3: 3.2%, Band4: 7.3%		

* Latest ALOS calibration result can be find at

http://www.eorc.jaxa.jp/hatoyama/satellite/data_tekyo_setsumei/alos_hyouka_e.html in English

PALSAR

Phased Array type L-band Synthetic Aperture Radar

Calibration Results of PALSAR

Radiometric calibration accuracy (common for all the off-nadir angles) ¹					
Absolute accuracy		0.76dB (1σ) : Corner reflector 0.22dB (1σ): Amazon Forest *			
Noise equivalent sig	gma-naught	-34dB (FBD-HV) -32dB (FBD-HH) -29dB (FBS-HH)			
Amplitude ratio of V	/V/HH for PLR	1.013 (0.062:1σ)			
Phase difference of	VV and HH for PLR	0.612deg (2.66deg∶1σ)			
Cross talk (PLR)		31.7dB			
Resolution	Single look in azimuth	4.49m			
	Range	9.6m (FBD, PLR, DSN)			
	Range	4.8m (FBS)			
Side lobes	In azimuth	-16.6dB			
	In range	-12.6dB			
	Two-dimensional	-8.6dB			
Ambiguity	Azimuth	-			
	Range	23dB			
Geometric accuracy (common for all the incidence angles) ²					
FBS, FBD, PLR, DS	N	9.7m (RMS)			
WB1, WB2		70m (RMS)			

¹Measurements of radiometric accuracy: Statistical analysis of the impulse response of the corner reflectors (CRs) at the calibration site and the responses from the Amazon rainforest. * Standard deviation of the incidence angle dependence of the gamma-naught** measured for five off-nadirs (e.g. 9.9, 21.5, 34.3, 41.5, and 50.8 degrees). ** Gamma-naught: normalized radar cross section (NRCS or sigma-naught) divided by the cosine of incidence angle.

² Measurements of geometric accuracy: Statistical evaluation of the worldwide CRs in total 572 and calculation of the root sum square of the distance between the position of the CRs, that is identified in the PALSAR image and obtained from the PALSAR geometric conversion formula, and its true location on the GRS80 that is calculated from the CR true measurement and the SAR observation geometry.

ALCOS Terrain Height Measurement by PRISM

"Height" shown by digital data > Gray scale color in raster image

- Digital Elevation Model (DEM): ground height = digital terrain model (DTM)
- ✓ Digital Surface Model (DSM): height including the features (*i.e.* canopy of trees, buildings)

Definition of "height"

- Altitude: above sea level *i.e.* gravity height (= 0 m), corresponds to geographical map
- Ellipsoid height: above Earth model = altitude + geoid height

EURC Earth Observation Research Center

SValidation – PRISM Digital Surface Model (DSM)

Validation – PRISM Digital Surface Model (DSM)

			Stati	stics of P	RISM	DSM	- Refer	rence	Lidar	(whol	e ar	ea)		
Site	Те	rrain	GC	P Po	ints	Bias	[m]	SD [n	n] R	MSE	[m]	Max [m]] Mir	າ [m]
Mt.Tsukuba	Moun & Fla	tainous t	42	2 128	7801	-1.7	70	4.92	2	5.21		32	_	73
Statistics	s of PR	ISM DSN	Л — F	Reference	Lidar	(indiv	vidual la	and us	se and	l land o	cove	er)	Count 150000	1
Terrain	1	Points	E	Bias [m]	SD) [m]	RMSE	E [m]	Max	(m]	Μ	in [m]	120000	
Mountain to	p *)	1000	0	-1.64		5.50	Ę	5.73		31		-38	120000	1
Mountain sid	de ^{*)}	1000	0	-2.59		6.49	6	6.99		24		-37	90000	
Mountain va	lley ^{*)}	1000	0	-2.85		6.02	6	6.66		20		-31	60000	
Mountain rid	lge ^{*)}	1000	0	-2.65		5.98	6	6.54		22		-55	00000	1
Paddy		1000	0	-0.09		2.68		2.68		15		-17	30000	-
Paddy & Tre	es	1000	0	-2.15		4.37	4	4.87		15		-32	n	
Village		1000	0	-0.39		3.12		3.14		10		-22	Ŭ	-30 -25

*) Mountainous areas are including forests

Validation of generated PRISM DSM for individual land cover (blue: RMSE, purple: bias error)

Results of analysis and validation

- Height accuracy (whole area) = $4.92m (1\sigma)$, 5.21m (RMS)

- Except forest areas = 3.57m (RMS)
- ✓ Forest areas are including bias error

 The correlation coefficients may become high at the inside of boundaries (e.g. edges) of forests, buildings *etc.* It causes under estimations of the height > limitation of correlation matching

Height differences (8x8km)

20 25

Validation – PRISM DSM in Snow Region

Mt. Tateyama, Japan acquired on June 23, 2007: Covered by snow > Test validation of PRISM DSM for glacier regions

PRISM Ortho Rectified Image (ORI)
 Using PRISM DSM
 8 bits binary raw data: 14878 x 16000 pxls

Validation – PRISM DSM in Snow Region

ALPSMLR01_07512N2865F2810B2920_UR_MSK: Mask file (8bit Raw) ALPSMLR01_07512N2865F2810B2920_UR_DSM :DSM product (16bit Raw)

PRISM DSM product consist of Signed 16
 bits binary raw data: 14878 x 16000 pxls
 Dark image because digital number (DN)
 corresponding to ellipsoid height (meter)

\downarrow

Data scaling of DSM product to show the image

 \downarrow

✓ Mask file contains information of valid regions, which shows white color.

Blue: land water area, Green: clouds and invalid regions

EORC Earth Observation Research Center

Validation - PRISM DSM in Snow Region

Reference data: GPS measurement by Nagoya University

GPS measurement			Difference		PRISM DSM	
Lat	Long	HEIGHT	PRISM-GPS	Height	Lat	Long
36.596376	137.610255	2799.047	11.953	2811	36.596380	137.610261
36.572209	137.616978	3000.995	4.005	3005	36.572208	137.616979
36.571992	137.616021	2950.888	3.112	2954	36.571989	137.616022
36.571770	137.614717	2900.946	2.054	2903	36.571769	137.614718
36.571800	137.614526	2890.920	1.080	2892	36.571798	137.614527
36.571598	137.613884	2850.952	-4.952	2846	36.571597	137.613885
36.571513	137.613558	2830.965	-2.965	2828	36.571511	137.613558
36.571302	137.613006	2800.679	-7.679	2793	36.571302	137.613007
36.571122	137.612817	2780.878	-0.878	2780	36.571119	137.612819
36.596359	137.609946	2798.587	11.413	2810	36.596357	137.609947
		Average_diff	1.714			
	STDEV_diff		6.394			
=		RMSE_diff	6.303			

Validation of PRISM DSM in Alaska, US

Location of validation test site of PRISM DSM in the Kenai Peninsula, Alaska, US

- New validation test site of PRISM DSM
 - Airborne Lidar DEM
 - Large area: 60 x 150km
 - Height variation: 0 1,500m
 - Mountainous region with snow and glaciers in the eastern part
- ✓ 16 scenes PRISM DSM was processed

Reference DEM by airborne Lidar provided by the ASF, UAF Mask: Cloud / No data Cloud / No data Land-Water Sea / No data Generated PRISM DSM (16 scenes mosaic)

Validation of PRISM DSM in Alaska, US

Height difference = PRISM DSM - Lidar DEM (60 x 150 km)

Histogram of height differences in the Kenai Peninsula, Alaska

Results of analysis and validation

- Height accuracy (whole area) = 2.88m (RMSE), 2.82m (1σ),
 0.60m (bias) / 43,669,079 evaluation points
- ✓ This result is consist of other validation results in natural terrains
- ✓ PRISM DSMs can be sufficient to generate precise glacial lake and glacier inventories with terrain height information.

Forest Monitoring: ALOS Kyoto & Carbon (K&C) Initiative

PALSAR 50m-mesh Ortho-rectified Mosaic Products in Asia and Oceania regions (once / year)

- ALOS "Kyoto & Carbon Initiative" (K&C) is an international collaboration project led by JAXA
- Monitoring forest change (deforestation and reforestation), wet land etc. as carbon source and sink
- Global PALSAR mosaic images are available on http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm
- 🖉 🧵 SINGHQANAR

ALOS Kyoto & Carbon (K&C) Initiative

PALSAR Browse Mosaic Products (every cycle)

- 500m-mesh, entire global land areas
- Global PALSAR mosaic images are available on <u>http://www.eorc.jaxa.jp/ALOS/en/kc_mosaic/kc_mosaic.htm</u>

JERS-1 GFM vs. ALOS K&C

アマゾン西ロンドニア地方森林伐採領域の変化

0 PALSAR : May/Aug, 2006

画素数 画像面積 伐採城画積 伐採域の 抽出圖素数 pixel line [km²] [km²] JERS 2471 2949 72869.8 433590 4335.9 2286 2707 629915 6299.2 PALSAR 61882.0 伐採增加面積 1963.3

ÿpixel spacing≒100m

JERS-1/SAR : Sep/Dec, 1995

100km

Precise Land-Use and Land-Cover (LULC) Map using AVNIR-2

Combination of PolSAR + InSAR

By 大木(EORC)

 PolInSAR data contains many feature parameters: amplitudes and coherences of different scattering mechanisms

Feasibility study on LC classification by PALSAR PolInSAR

- Simple 6 classes supervised LC classification in Japan region
- Comparison between different classification methods (SVM and Wishart)
- Comparison between different datasets (Full-PolInSAR, Dual-PolInSAR, Full-Pol and Dual-Pol)

EORC Earth Observation Research Center

Land-Use and Land-Cover (LULC) Map using Pol-In-SAR by PALSAR

Method: SVM

Dataset	Full-Pol-InSAR	Dual-Pol- InSAR	Full-Pol	Dual-Pol
Polarization (m):master (s):slave	HH, HV, VV (m) HH, HV, VV (s)	HH, HV (m) HH, HV (s)	HH, HV, VV (m)	HH, HV (m)
Overall Accuracy	91.30	85.69	80.09	69.05
Kappa coefficient	0.886	0.810	0.736	0.577
Calc. time (sec)*	329	206	272	197

Method: Wishart

Dataset	Full-Pol-InSAR	Dual-Pol- InSAR	Full-Pol	Dual-Pol
Polarization (m):master (s):slave	HH, HV, VV (m) HH, HV, VV (s)	HH, HV (m) HH, HV (s)	HH, HV, VV (m)	HH, HV (m)
Overall Accuracy	64.87	62.40	60.22	58.41
Kappa coefficient	0.578	0.549	0.524	0.502
Calc. time (sec)*	21.6	9.43	5.35	6.72
THEOREMAN		*CPU elapsed time	e for training and class	sifying

災害における衛星観測データの利用

衛星観測の特長を活かした「夜間・悪天候時の観測」、「広域の観 <u>測」、「繰り返しの観測」</u>により得られた情報を防災活動に提供する。

航空機やヘリコプタ等による情報収集を補い、防災活動に貢献

ALSS M7.0 Earthquake in Haiti (Jan. 12, 2010 UTC)

S M7.0 Earthquake in Haiti (Jan. 12, 2010 UTC)

Flooding by Cyclone in Myanmar (May 2008)

Ayeyarwaddy

40[km]

Myanmar was heavily flooded from May 2 to May 3, 2008, due to Cyclone "Nargis". JAXA decided to activate the ALOS/PALSAR to observe the area quickly, and succeeded to acquire image the area on May 6.

- Overlaying images with Apr. 24, 2008 ScanSAR (right) Blue: inundation area

Vallour ovnosting soil maisture increased

(C) JAXA, METL Analyzed by JAXA

Flooding by Cyclone in Myanmar (May 2008)

Expecting inundation area by post AVNIR-2 (May 4, 2008)

2008/5/4

Expecting inundation area by post AVNIR-2 (Jun. 19, 2008)

arch Center

Glacial Lake Outburst Flood (GLOF) Monitoring in the Bhutan and Himalayas

3D view of Lunana region, Bhutan by PRISM DSM and AVNIR-2 acquired on Dec. 26, 2007

Temporal change of area of glacial lake in Bhutan

(ha)	Bechung	Raphstreng Tso	Thorthormi	Lugge Tsho
1993.12.27	1	127	0	118
1994.11.9	4	130	41	96
2007.12.26	18	126	88	127

* This project is conducted in "Science and Technology Research Partnership for Sustainable Development" sponsored by JST and JICA.

Glacial Lake Outburst Flood (GLOF) Monitoring in the Bhutan and Himalayas

Glacial Lake Outburst Flood (GLOF) Monitoring in the Bhutan and Himalayas

PRISM / AVNIR-2 = Pan-sharpened images generation in Bhutan, Nepal, and Himalayan regions

- Ortho-rectified image bases with possible digital elevation models (DEMs) by satellite imageries
- Digitizing glacial lakes by manual
- ✓ Glaciers / Glacial lakes inventories: Corona (HK-9), SPOT, Landsat, JERS-1/OPS, ASTER, and ALOS

Concept of ALOS F/O Mission

ALOS F/O Mission: ALOS-2 (SAR) and ALOS-3 (Optical)

- National land monitoring and managements
- Resources managements
- Disaster monitoring
- ALOS-2 is planed to be launch in 2012-13, and ALOS-3 is hoped in 2014-15 (TBD)

Current System Concept (under investigation)

- Monitoring disaster area affected by earthquake, volcano, flood, etc.
- Observing the disaster affected area within 3 hr (6 hr in night)
- A satellite constellation of two optical sensor satellites and two SAR satellites
- ALOS-2: 3m resolution (3x1m in spotlight mode) with 50km swath (SAR)
- ALOS-3: Panchromatic 0.8m resolution in 50km swath; multi 5m in 90km swath; and hyper-spectral 30m in 30km swath (TBD)

EORC Earth Observation Research Center

ALOS-2 Specification

ALOS-2: SAR Satellite

 August, 2009-: Project Team was established

✓ -December 2009: Preliminary Design Phase

✓ -October 2010: Critical Design Phase

Orbit Altitude: Approx. 630km LST: 12:00 in descending orbit Design Life 5 years Launch Target JFY2012-2013 Rocket H-2A Mass Approx. 2 ton Satellite Solar Paddle Two-wings type panel Mission Data Transmission Direct / via. Data Relay Satellite Mission Sensor Synthetic Aperture Radar (SAR) Frequency L-band (1.2GHz) Major Fine Resolution: 1-3 m, Width: 25 km Major Basic Resolution: 3 m, Width: 50 km Wide Resolution: 100 m, Width: 350 km			Sun-Synchronous Sub-Recurrent		
LST: 12:00 in descending orbitDesign Life5 yearsTargetJFY2012-2013LaunchTargetJFY2012-2013RocketH-2AMassApprox. 2 tonSatelliteMassApprox. 2 tonSolar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 km	Orbit		Altitude: Approx. 630km		
Design Life5 yearsLaunchTargetJFY2012-2013RocketH-2AAgprox. 2 tonSatelliteMassApprox. 2 tonSolar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmMajor WideResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 km			LST: 12:00 in descending orbit		
LaunchTargetJFY2012-2013RocketH-2AAgprox. 2 tonSatelliteMassSolar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmWideResolution: 3 m, Width: 50 kmCrustal change, volcano monitoring, surface deformation	Design Life		5 years		
LauricinRocketH-2ASatelliteMassApprox. 2 tonSolar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 km	Launch	Target	JFY2012-2013		
SatelliteMassApprox. 2 tonSolar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmMajor WideBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 km	Launch	Rocket	H-2A		
Solar PaddleTwo-wings type panelMission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmWideResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 kmCrustal change, volcano monitoring, surface deformation	Satellite	Mass	Approx. 2 ton		
Mission Data TransmissionDirect / via. Data Relay SatelliteMission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 kmCrustal change, volcano monitoring, surface deformation	Saleinle	Solar Paddle	Two-wings type panel		
Mission SensorSynthetic Aperture Radar (SAR)FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 kmCrustal change, volcano monitoring, surface deformation	Mission Dat	ta Transmission	Direct / via. Data Relay Satellite		
FrequencyL-band (1.2GHz)Major Observation ModeFineResolution: 1-3 m, Width: 25 kmBasicResolution: 3 m, Width: 50 kmWideResolution: 100 m, Width: 350 kmCrustal change, volcano monitoring, surface deformation	Mission Sei	nsor	Synthetic Aperture Radar (SAR)		
Major Fine Resolution: 1-3 m, Width: 25 km Observation Basic Resolution: 3 m, Width: 50 km Mode Wide Resolution: 100 m, Width: 350 km Crustal change, volcano monitoring, surface deformation Surface deformation	Frequency		L-band (1.2GHz)		
Major Basic Resolution: 3 m, Width: 50 km Mode Wide Resolution: 100 m, Width: 350 km Crustal change, volcano monitoring, surface deformation	Major	Fine	Resolution: 1-3 m, Width: 25 km		
Wide Resolution: 100 m, Width: 350 km Crustal change, volcano monitoring, surface deformation	Observation	n Basic	Resolution: 3 m, Width: 50 km		
Crustal change, volcano monitoring, surface deformation	Mode	Wide	Resolution: 100 m, Width: 350 km		
Mission Objectives	Mission Ob	iectives	Crustal change, volcano monitoring, surface deformation		
Sea ice, river, forest and agriculture monitoring etc.	Mission Objectives		Sea ice, river, forest and agriculture monitoring etc.		

ALOS-3 Specification (TBD)

				Sun-Synchronous Sub-Recurrent	
	Orbit			Altitude: Approx. 620km	
				LST: 13:30 in descending orbit	
	Design Life			5 years	
	Loupob	Та	rget	JFY2013-2014	
	Launch	Ro	ocket	H-2A	
	Satallita	Mass		Approx. 2 ton	
and the second s	Saleille	Sc	lar Paddle	Two-wings type panel	
ALOS-3: Optical Sensor Satellite	Mission Data Transmission			Direct / via. Data Relay Satellite	
	Mission Sensor			Optical instruments	
	Majar		Panchromatic	Resolution: 0.8 m, Width: 50 km	
	Observation	ו	Multi spectral	Resolution: 3.2 m, Width: 90 km	
 In bits quantization JPEG 2000 onboard compression Stereo function (two telescopes?) Body pointing function (+/-60 deg.) 	wode	Hyper spectr		Resolution: 30 m, Width: 30 km	
	Mission Objectives			Cartography, volcano monitoring, surface change detection	
				Sea ice, river, forest and agriculture monitoring etc.	

IEEE IGARSS 2011 in Sendai

IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2011)

- Date: August 1 5, 2011
- **Venue:** Sendai International Center, Sendai, Japan
- **Website:** http://igarss11.org/
- Important dates
 - ✓ Invited Session Proposal Deadline: Oct. 11, 2010
 - ✓ Abstract Submission System On-line: Dec. 10, 2010
 - ✓ Abstract Submission Deadline: Jan. 7, 2011
 - ✓ Travel Support Application Deadline: Jan. 14, 2011
 - ✓ Student Paper Competition Deadline: Jan. 14, 2011
 - IGARSS 2011 Sendai: Aug. 1 5, 2011
 - Sendai "TANABATA" Festival: Aug. 6 7, 2011
- IGARSS 2010 Honolulu: July 26 30, 2010
 - ✓ Submitted abstract: 2,857 papers
 - Presentation: 1,890 papers
 - ✓ Attendees: 2,000

